Количественные показатели популяций

Статические показатели популяций

Статические показатели характеризуют состояние популяции на данный момент времени.

К статическим показателям популяций относятся их численность, плотность и показатели структуры. Численность - это поголовье животных или количество растений, например, деревьев, в пределах некоторой пространственной единицы - ареала, бассейна реки, акватории моря, области, района и т.д. Плотность - число особей, приходящихся на единицу площади, например, плотность населения - количество человек, приходящееся на один квадратный километр, или для гидробионтов - это количество особей на единицу объема, на литр или кубометр. Показатели структуры: половой - соотношение полов, размерный - соотношение количества особей разных размеров, возрастной - соотношение количества особей различного возраста в популяции.

Численность тех или иных животных определяется различными методами. Например, подсчетом с самолета или вертолета при облетах территории. Численность гидробионтов определяют путем отлавливания их сетями (рыбы), для микроскопических (фитопланктон, зоопланктон) применяют специальные мерные емкости.

Численность человеческой популяции определяется путем переписи населения всего государства, его административных подразделений и т.п. Знание численности и структуры населения (этнической, профессиональной, возрастной, половой и т.п.) имеет большое экономическое и экологическое значение.

Плотность популяции определяется без учета неравномерности распределения особей на площади или в объеме, т.е. получаем среднюю плотность животных, деревьев, людского населения на единицу площади или микроскопических водорослей в единице объема.

Каждое животное соблюдает баланс энергии, затрачиваемой на охрану территории, добывание пищи и получаемой от съедания пищи. При уменьшении корма животные расширяют свою территорию (а человек, например, «поднимает целину»). Такое поведение животных называют территориальным поведением. Чем крупнее животное, тем большая ему нужна площадь на добычу пищи, поэтому, чем больше размеры тела особи, тем меньше плотность популяции.

Территориальные границы могут быть весьма подвижны. Достаточно надежно определяются границы у немигрирующих животных (грызуны, моллюски), которые создают так называемые локальные популяции. У подвижных - границы трудно определить, например, у лося, а тем более у птиц, которые легко мигрируют и расселяются на больших территориях. Ограничивают возможность расселения как биотические, так и абиотические факторы. Из биотических факторов среды такими являются, прежде всего, пресс хищников и конкурентов, нехватка пищевых ресурсов, а из абиотических - толерантность к факторам среды.

Пресс хищников особенно силен, когда в коэволюции «хищник - жертва» равновесие смещается в сторону хищника и ареал жертвы сужается. Конкурентная борьба тесно связана с нехваткой пищевых ресурсов, она может быть и прямой борьбой, например, хищников за пространство как ресурс, но чаще всего это просто вытеснение вида, которому на данной территории пищи не хватает, видом, которому этого, же количества пищи вполне достаточно. Это уже межвидовая конкуренция.

Важнейшим условием существования популяции или ее экотипа является их толерантность к факторам (условиям) среды. Толерантность у разных особей и к разным частям спектра разная, поэтому толерантность популяции значительно шире, чем у отдельных особей (см. рис. 2.1). Но из этого правила могут быть исключения, зависящие от того, какую стадию жизненного цикла проходит особь: толерантность наибольшая у покоящейся особи.

Итак, свойства популяции уже значительно отличаются от свойств отдельных особей, что особенно наглядно проявляется в динамике популяций.

Динамические показатели популяций

Показатели характеризуют процессы, протекающие в популяции за какой-то промежуток (интервал) времени. Основными динамическими показателями (характеристиками) популяций являются рождаемость, смертность и скорость роста популяций.

Рождаемость, или скорость рождаемости - это число особей, рождающихся в популяции за единицу времени. При рассмотрении экосистем пользуются другим динамическим показателем - продукцией - суммой прироста массы всех особей (независимо от того, сколько они прожили) из множества популяций биогенного сообщества за определенный промежуток времени.

Смертность,или скорость смертности - это число особей, погибших в популяции в единицу времени. Но убыль или прибыль организмов в популяции зависит не только от рождаемости и смертности, но и от скорости их иммиграции и эмиграции.

Скорость иммиграции и эмиграции - это есть соответственно количество особей, прибывших и убывших в популяции в единицу времени. Но убыль и прибыль организмов в популяции зависят не только от рождаемости и смертности, но и от скорости их иммиграции и эмиграции, т.е. от количества особей прибывших и убывших в популяции в единицу времени. Увеличение численности, прибыль, зависит от количества от рожденных (рожденных за какой-то период времени) и иммигрировавших особей, а уменьшение, убыль численности - от гибели (смертности в широком смысле) и эмиграции особей.

Явления иммиграции и эмиграции на численность влияют несущественно, поэтому при расчетах ими можно пренебречь. Рождаемость, или скорость рождаемости, выражают отношением

где ΔNn - число особей (яиц, семян и т.п.), родившихся (отложенных, продуцированных и т.д.) за некоторый промежуток времени - Δt.

Но для сравнения рождаемости в различных популяциях пользуются величиной удельной рождаемости: отношением скорости рождаемости к исходной численности (N):

За бесконечно малый промежуток времени (Δ→0) мыполучиммгновенную удельную рождаемость, которую обозначают латинской буквой «b». Эта величина имеет размерность «единица времени -1» и зависит от интенсивности размножения особей: для бактерий - час, для фитопланктона - сутки, для насекомых - неделя или месяц, для крупных млекопитающих - год.

Смертность - величина, обратная рождаемости, но измеряется в тех же величинах и вычисляется по аналогичной формуле. Если принять, что ΔNm - число погибших особей (независимо от причины) за время Δ t, то удельная смертность

а при Δ →0 имееммгновенную удельную смертность, которую обозначают буквой «d».

Величины рождаемости и смертности по определению могут иметь только положительное значение, либо равное нулю.

Скорость изменения численности популяции, т.е. ее чистое увеличение и уменьшение, можно представить и как изменение ΔN за Δt, а при Δ →0 можноееопределитькакмгновенную скорость изменения численности (r), которая может быть рассчитана как:

r = b - d.

Анализ уравнения показывает, что если b = d, то r = 0 и популяция находится в стационарном состоянии, если же b¹ d, то r может быть величиной положительной (b > d), и мы имеем численный рост популяции, или отрицательной (b < d), что говорит о снижении численности на данном отрезке времени. Эта формула важна как раз для определения смертности, которую трудно измерить непосредственно, а определить r достаточно просто непосредственными наблюдениями, тогда d = b - r.

Продолжительность жизни вида

Продолжительность жизни вида зависит от условий (факторов) жизни. Различают физиологическую и максимальную продолжительность жизни.

Физиологическая продолжительность жизни - это такая продолжительность жизни, которая определяется только физиологическими возможностями организма. Теоретически она возможна, если допустить, что в период всей жизни организма на него не оказывают влияние лимитирующие факторы.

Максимальная продолжительность жизни - это такая продолжительность жизни, до которой может дожить лишь малая доля особей в реальных условиях среды. Эта величина варьирует в широких пределах: от нескольких минут у бактерий до нескольких тысячелетий у древесных растений (секвойя). Обычно, чем крупнее растение или животное, тем больше их продолжительность жизни, хотя бывают и исключения (летучие мыши доживают до 30 лет, это дольше, например, жизни медведя).

Смертность и рождаемость у организмов весьма существенно изменяются с возрастом. Только увязав смертность и рождаемость с возрастной структурой популяции, можно вскрыть механизмы общей смертности и определиться со структурой продолжительности жизни. Такую информацию можно получить с помощью таблиц выживания.

Таблицы выживания,или еще их называют «демографическими таблицами», содержат сведения о характере распределения смертности по возрастам. Демография изучает размещение, численность, состав и динамику народонаселения, а эти таблицы она использует для определения ожидаемой продолжительности жизни человека. Таблицы выживания бывают динамические и статические.

Динамические таблицы выживания строятся по данным прямых наблюдений за жизнью когорты, т.е. большой группы особей, от рожденных в популяции за короткий промежуток времени относительно общей продолжительности жизни изучаемых организмов, и регистрации возраста наступления смерти всех членов данной когорты. Такие таблицы требуют длительного наблюдения, измеряемого (для разных животных) месяцами или годами. Но практически невозможно такую таблицу сделать для долго живущих животных, для человека - для этого может потребоваться более100 лет. Поэтому используют другие таблицы - статические.

Статические таблицы выживания составляются по данным наблюдений за относительно короткий промежуток времени за смертностью в отдельных возрастных группах. Зная численность этих групп (сосуществующих когорт), можно расчитать смертность, специфическую для каждого возраста (табл. 3.1, Гиляров, 1990).

Таблица 3.1

Статическая демографическая таблица женского населения Канады на 1980 г.
(по Krebs, 1985)

Такие таблицы представляют собой как бы временной срез через популяцию. Если в популяции не происходит существенных изменений в смертности и рождаемости, то статические и динамические таблицы совпадают.

Данные таблиц выживания позволяют построить кривые выживания, или их еще называют кривыми дожития, так как отражают зависимость количества доживших до определенного возраста особей от продолжительности этого интервала с самого момента от рождения организмов.

Выделяют три типа основных кривых выживания (рис. 3.1), к которым в той или иной мере приближаются все известные кривые. 

Рис. 3.1. Различные типы кривых выживания (Deevey, 1950)

Кривая I типа,когда на протяжении всей жизни смертность ничтожно мала, резко возрастая в конце нее, характерна для насекомых, которые обычно гибнут после кладки яиц (ее и называют «кривой дрозофилы»), к ней приближаются кривые выживания человека в развитых странах, а также некоторых крупных млекопитающих.

Кривая III типа - это случаи массовой гибели особей в начальный период жизни. Гидробионты и некоторые другие организмы, не заботящиеся о потомстве, выживают за счет огромного числа личинок, икринок, семян и т.п.

Моллюски, прежде чем закрепиться на дне, проходят личиночную стадию в планктоне, где личинки гибнут в огромных количествах, поэтому кривую III называют еще «кривой устрицы».

Кривая II типа (диагональная) характерна для видов, у которых смертность остается примерно постоянной в течение всей жизни. Такое распределение смертности не столь уж редкое явление среди организмов. Встречаются они среди рыб, пресмыкающихся, птиц, многолетних травянистых растений.

Реальные кривые выживания часто представляют собой некоторую комбинацию указанных выше «основных типов». Например, у крупных млекопитающих, да и у людей, живущих в отсталых странах, кривая I вначале круто падает за счет повышенной смертности сразу после рождения.

Динамика численности популяций

Еще в ХVII в. заметили, что численность популяций растет по закону геометрической прогрессии, а уже в конце ХVIII в. Томас Мальтус (1766 - 1834) выдвинул свою известную теорию о росте народонаселения в геометрической прогрессии. Эта закономерность роста выражается кривой, изображенной на рис. 3.2, a.

Рис.3.2. Экспоненциальный рост гипотетической популяции
одноклеточного организма, делящегося каждые 4 часа:

а - арифметическая шкала; б - логарифмическая шкала

На современном математическом языке эта кривая (рис. 3.2) отражает экспоненциальный рост численности организмов и описывается уравнением:

Nt = No ert,

где Nt - численность популяции в момент времени t;

No - численность популяции в начальный момент времени t0 ;

e - основание натурального логарифма (2,7182);

r - показатель, характеризующий темп размножения особей в данной популяции.

Экспоненциальный рост возможен только тогда, когда r имеет постоянное численное значение, так как скорость роста популяции пропорциональна самой численности: 

Если численность отложить в логарифмическом масштабе, то кривая приобретает вид прямой линии (рис. 3.2, б).

Таким образом, экспоненциальный рост численности популяции - это рост численности ее особей вне изменяющихся условиях.

Условия, сохраняющиеся длительное время постоянными, невозможны в природе. Если бы это было не так, то, например, обычные бактерии могли бы дать такую массу органического вещества, которая могла бы покрыть весь земной шар слоем толщиной в два метра за два часа.

Однако такого в природе не происходит, так как существует множество ограничивающих факторов. Но есть примеры, когда при замедлении роста, т.е. при снижении r, экспоненциальный рост сохраняется, может он возникать и на коротких отрезках жизни популяций.

Чтобы иметь полную картину динамики численности популяции, а также рассчитать скорость ее роста, необходимо знать величину так называемой чистой скорости воспроизводства (Rо), которая показывает, во сколько раз увеличивается численность популяции за одно поколение, за время его жизни - T

где Nт - численность нового поколения;

No - численность особей предшествующего поколения;

Ro - чистая скорость воспроизводства, показывающая также, сколько вновь родившихся особей приходится на одну особь поколения родителей.

Если Ro = 1, то популяция стационарная, - численность ее сохраняется постоянной.

Скорость роста популяции обратно пропорциональна длительности поколения 

отсюда ясно, что чем раньше происходит размножение организмов, тем больше скорость роста популяции. Это в равной степени относится и к популяции человека, отсюда - важность значения этой закономерности в демографической политике любого государства.

Воздействие экологических факторов на скорость роста популяции может довести численность популяции до стабильной (r = 0), либо ее уменьшить, т.е. экспоненциальный рост замедляется или останавливается полностью и J-образная кривая экспоненциального роста как бы останавливается и выполаживается, превращаясь в так называемую S-образную кривую (рис. 3.3, а).

В природе так и происходит: экспоненциальный рост наблюдается какое-то достаточно короткое время, после чего ограничивающие факторы его стабилизируют, и дальнейшее развитие популяции идет по логистической модели, что и описывается S -образной, или логистической кривой роста популяции.

Рис.3.3. Логистическая модель роста популяции:

а -кривая ростачисленности (N);
б - зависимость удельной скорости роста (r) от численности (N);
в - зависимость рождаемости (b) и смертности (d) от численности;
K
- предельная численность

В основе логистической модели (см. рис. 3.3) лежит простое допущение, что скорость роста популяции (rа) линейно снижается по мере роста численности вплоть до нуля при некой численности K. Итак, при начальной численности Nо (близкой к нулю) скорость роста имеет максимальное значение - rmax, а при N = K, rа = 0. В результате решения уравнения логистической кривой получаем зависимость:

где Nt - численность популяции в момент времени t;

e - основание натурального логарифма;

a - постоянная интегрирования.

Величину K называют еще емкостью среды в отношении особей данной популяции. Здесь речь идет о биологической емкости среды - степени способности природного или природно-антропогенного окружения обеспечивать нормальную жизнедеятельность (дыхание, питание, размножение, отдых и т.п.) определенному числу организмов и их сообществ без заметного нарушения самого окружения (Реймерс, 1990).

Однако плато на S -образной кривой далеко не всегда бывает гладким, потому что колебания численности происходят постоянно, что отражается в виде колебаний кривой вокруг асимптоты «K» (рис. 3.4), эти колебания называются флуктуациями численности, которые могут быть сезонными игодовыми. Первые обусловлены абиотическими факторами, вторые - плюс к этому, еще и внутренними, биотическими. Колебания, вызванные биотическими факторами, называют осцилляциями (рис. 3.5), они отличаются высокой регуляцией и их даже называют циклами. Многие факторы, природные и антропогенные, вызывающие флуктуации, в значительной мере можно учесть, введя в формулу поправочные коэффициенты. Такие формулы позволяют прогнозировать реальный рост популяции животных и подобные процессы в демографии людского населения.

Рис. 3.4. Преобразование J-образнойкривой роста численности в S-образную кривую при ограничивающем воздействии лимитирующих факторов (по Т. Миллеру, 1993)

Рис. 3.5. Изменение численности рысии зайца - классический пример
цикличности колебаний популяций

В настоящее время уже достаточно моделей, подтверждающих логистическую модель, как на чисто природных объектах, так и на природно-антропогенных. Например, А. М. Гиляров (1990)приводит сведения о размножении северных оленей, интродуцированных (вселенных в местообитания, где они раньше не проживали) на острова Берингова моря. С небольших когорт, состоящих из нескольких десятков особей, в течение ряда лет рост численности по экспоненциальному закону приводил к возникновению популяции оленей, состоящей из нескольких тысяч голов. Затем наблюдалось резкое падение численности тоже до нескольких десятков голов за короткое время, один - три года. Причина - полный расход пищевых ресурсов, которыми обладали эти острова.

Регуляция плотности популяции

Логистическая модель роста популяции предполагает наличие некой равновесной (асимптотической) численности и плотности. В этом случае рождаемость и смертность должны быть равны, т.е., если bd, то должны действовать факторы, изменяющие либо рождаемость, либо смертность.

Факторы, регулирующие плотность популяции, делятся на зависимые и независимые от плотности. Зависимые изменяются с изменением плотности, а независимые остаются постоянными при ее изменении. Практически, первые - это биотические, а вторые - абиотические факторы.

Влияние независимых от плотности факторов хорошо прослеживается на сезонных колебаниях численности планктонных водорослей. Например, в системе Манычских водохранилищ (Северное Предкавказье) диатомовые водоросли дают два «пика» численности - весной (конец апреля) и осенью (конец сентября), а в остальное время действуют (точнее, преобладают) зависимые от плотности факторы - конкурентная борьба на выживание с бурно развивающимися летом зелеными и сине-зелеными водорослями.

Непосредственно от плотности может зависеть и смертность в популяции. Такое явление происходит с семенами растений, когда зависимая от плотности (т.е. регулирующая) смертность происходит на стадии проростков. Смертность, зависимая от плотности, может регулировать численность и высокоразвитых организмов: довольно часто гибнут птенцы птиц, если их слишком много, а ресурсов не хватает.

Помимо выше описанной регуляции существует еще саморегуляция, при которой на численности популяции сказывается изменение качества особей. Различают саморегуляцию фенотипическую и генотипическую.

Фенотипы - совокупность всех признаков и свойств организма, сформировавшихся в процессе онтогенезана основе данного генотипа. Дело в том, что при большой скученности (плотности) образуются разные фенотипы за счет того, что в организмах происходят физиологические изменения в результате так называемой стресс-реакции (дистресс), вызываемой неестественно большим скоплением особей. Например, у самок грызунов происходит воспаление надпочечников, что ведет к сокращению рождаемости. Кроме того, нехватка пищи заставляет особей мигрировать на новые участки, что приводит к большой их гибели в пути и на новых участках, в новых условиях, т.е. повышается смертность и сокращается численность.

Генотипические причины саморегуляции плотности популяций связаны с наличием в ней, по крайней мере, двух разных генотипов, возникших в результате рекомбинации генов.

При этом возникают особи, способные размножаться с более раннего возраста и более часто, и особи, с поздней половозрелостью и значительно меньшей плодовитостью. Первый генотип менее устойчив к стрессу при высокой плотности и доминирует в период подъема пика численности, а второй - более устойчив к высокой скученности и доминирует в период депрессии.

Примером, подтверждающим воздействие генотических изменений, являются известные с незапамятных времен насекомые - саранча. У саранчевых имеются дверазнокачественные группы - одиночная и стадная формы, которые морфологически существенно отличаются. В благоприятные по влажности года преобладают особи одиночной формы, и популяция находится в равновесии. В результате же нескольких подряд засушливых лет создаются условия для развития особей стадной фазы.

У стадной формы, вылупившиеся из яиц молодые особи (нимфы) быстро двигаются, лучше обеспечены водой и запасами питательных веществ и, хотя у них плодовитость меньше, за счет лучшей выживаемости, более быстрого развития и ярко выраженной способности собираться в группы, процесс размножения идет очень быстро и с нарастающей скоростью.

Образовавшиеся огромные стаи переносятся ветром на громадные расстояния. Так, мигрирующие очень быстро стаи красной саранчи в центральной Африке могут занимать площадь, в 1500 раз превышающую области обитания одиночной фазы. Если во время миграции будет найдено место, благоприятное по условиям для размножения, размер стаи может увеличиться до невероятных значений. Так, стая красной саранчи, совершившая налет в Сомали в 1957 г., состояла из 1,6×1010 особей, и масса ее достигала 50 тыс. т. Если учесть, что за день одна саранча съедает столько, сколько весит сама, то нетрудно представить колоссальные размеры бедствий. Именно такие нашествия насекомых рассматривались как одно из стихийных бедствий на Международном экологическом конгрессе в Йокогаме (1994).

Циклические колебания можно также объяснить саморегуляцией. Климатические ритмы и связанные с ними изменения в пищевых ресурсах заставляют популяцию вырабатывать какие-то механизмы внутренней регуляции.

Так, у мышевидных грызунов Евразии и Северной Америки один период колебаний, состоящий из стадии подъема численности, пика, спада и депрессии, длится три - четыре года, иногда пять - шесть лет, а у зайцев - около десяти лет. Одним из известных гипотез такой цикличности является так называемая трофическая (пищевая), утверждающая, что эти циклы зависят не столько от количества пищи, сколько от ее качества (см. рис. 3.5).

Таким образом, саморегуляция обеспечивается механизмами торможения роста численности. Таких гипотетических механизмов три: 1) при возрастании плотности и повышенной частоте контактов между особями возникает стрессовое состояние, уменьшающее рождаемость и повышающее смертность; 2) при возрастании плотности усиливается миграция в новые местообитания, краевые зоны, где условия менее благоприятны и повышается смертность; 3) при возрастании плотности происходят изменения генетического состава популяции - замена быстро размножающихся на медленно размножающихся особей. Это свидетельствует о важнейшей роли популяции как в генетико-эволюционном смысле, так и в чисто экологическом, как элементарной единицы эволюционного процесса, и об исключительной важности событий, протекающих на этом уровне биологической организации, для понимания как существующих опасностей, так и «возможностей управления процессами, определяющими само существование видов в биосфере» (Яблоков, Остроумов, 1983).

Экологические стратегии выживания

Экологическая стратегия выживания - стремление организмов к выживанию. Экологических стратегий выживания множество. Например, еще в 30-х гг. А. Г. Роменский (1938) среди растений, различал три основных типа стратегий выживания, направленных на повышение вероятности выжить и оставить после себя потомство: виоленты, патиенты и эксплеренты.

Виоленты (силовики) - подавляют всех конкурентов, например, деревья, образующие коренные леса.

Патиенты - виды, способные выжить в неблагоприятных условиях («тенелюбивые», «солелюбивые» и т.п.).

Эксплеренты (наполняющие) - виды, способные быстро появляться там, где нарушены коренные сообщества - на вырубках и гарях (осины), на отмелях и т.д.

Все многообразие экологических стратегий заключено между двумя типами эволюционного отбора, которые обозначаются константами логистического уравнения: r-стратегия и K-стратегия. Тип r-стратегия, или r-отбор, определяется отбором, направленным прежде всего на повышение скорости роста популяции и, следовательно, таких качеств, как высокая плодовитость, ранняя половозрелость, короткий жизненный цикл, способность быстро распространяться на новые местообитания и пережить неблагоприятное время в покоящейся стадии. K -стратегия, или K -отбор, направлена на повышение выживаемости в условиях уже стабилизировавшейся численности. Это отбор на конкурентоспособность, повышение защищенности от хищников и паразитов, повышение вероятности выживаемости каждого потомка, на развитие более совершенных внутривидовых механизмов численности (Гиляров, 1990).

Очевидно, что каждый организм испытывает на себе комбинацию r - и K-отбора, но r-отбор преобладает на ранней стадии развития популяции, а K-отбор -уже характерен для стабилизированных систем. Но, все-таки, оставляемые отбором особи должны обладать достаточно высокой плодовитостью и достаточно развитой способностью выжить при наличии конкуренции и пресса хищников. Конкуренция r - и К-отбора позволяет выделять разные типы стратегий и ранжировать виды по величинам r и K в любой группе организмов.

Видовая структура сообществ и способы ее оценки

Для существования сообщества важна не только величина численности организмов, но еще важнее видовое разнообразие, которое является основой биологического разнообразия в живой природе. Согласно конвенции о биологическом разнообразии Конференции ООН по окружающей среде и развитию (Рио-де-Жанейро, 1992) под био разнообразием понимается разнообразие в рамках вида, между видами и разнообразие экосистем.

Разнообразие в рамках вида является основой стабильности в развитии популяций, разнообразие между видами и, следовательно, популяциями - основа существования биоценоза, как основной части экосистемы.

Видовая структура биоценоза характеризуется видовым разнообразием и количественным соотношением видов, зависящих от ряда факторов. Главными лимитирующими факторами являются температура, влажность и недостаток пищевых ресурсов. Поэтому биоценозы (сообщества) экосистем высоких широт, пустынь и высокогорий наиболее бедны видами. Здесь могут выжить организмы, жизненные формы которых приспособлены к таким условиям. Богатые видами биоценозы - тропические леса, с разнообразным животным миром и где трудно найти даже два рядом стоящих дерева одного вида.

Обычно бедными видами природные биоценозы считаются, если они содержат десятки и сотни видов растений и животных, богатые - это несколько тысяч или десятки тысяч видов. Богатство видового состава биоценозов определяется либо относительным, либо абсолютным числом видов и зависит от возраста сообщества: молодые, только начинающие развиваться - бедны видами по сравнению со зрелыми или климаксными сообществами.

Видовое разнообразие - это число видов в данном сообществе или регионе, т.е. имеет более конкретное содержание и является одной из важнейших как качественных, так и количественных характеристик устойчивости экосистемы. Оно взаимосвязано с разнообразием условий среды обитания. Чем больше организмов найдут в данном биотопе подходящих для себя условий по экологическим требованиям, тем больше видов в нем поселится.

Видовое разнообразие в данном местообитании называют a-разнообразием, а сумму всех видов, обитающих во всех место обитаниях в пределах данного региона, - b-разнообразием. Показателями для количественной оценки видового разнообразия, индексами разнообразия, обычно служит соотношение между числом видов и значениями их численности, биомассы, продуктивности и т.п., или отношение числа видов к единице площади.

Важным показателем является количественное соотношение числа видов между собой. Одно дело, когда среди ста особей содержится пять видов в соотношении 96 : 1 : 1 : 1: 1, и другое, если они соотносятся как 20 : 20 : 20 : 20 : 20. Последнее соотношение явно предпочтительнее, так как первая группировка значительно однообразнее.

Наиболее благоприятные условия для существования множества видов характерны для переходных зон между сообществами, которые называют экотонами, а тенденцию к увеличению здесь видового разнообразия называют краевым эффектом.

Экотон богат видами, прежде всего потому, что они попадают сюда из всех приграничных сообществ, но кроме того, он может содержать и свои характерные виды, которых нет в этих сообществах. Ярким примером этого является лесная «опушка», на которой пышнее и богаче растительность, гнездится значительно больше птиц, больше насекомых и т.п., чем в глубине леса.

Виды, которые преобладают по численности, называют доминантными, или просто - доминантами данного сообщества. Но и среди них есть такие, без которых другие виды существовать не могут. Их называют эдификаторами (с лат. - строители). Они определяют микросреду (микроклимат) всего сообщества и их удаление грозит полным разрушением биоценоза. Как правило, эдификаторами выступают растения - ель, сосна, кедр, ковыль и лишь изредка - животные (сурки).

«Второстепенные»виды - малочисленные и даже редкие - тоже очень важны в сообществе. Их преобладание - это гарантия устойчивого развития сообществ. В наиболее богатых биоценозах практически все виды малочисленны, но чем беднее видовой состав, тем больше видов доминантов. При определенных условиях могут быть «вспышки» численности отдельных доминантов.

Для оценки разнообразия используют и другие показатели, которые значительно дополняют вышеуказанные. Обилие вида - число особей данного вида на единицу площади или объема занимаемого ими пространства. Степень доминирования - отношение (обычно в процентах) числа особей данного вида к общему числу всех особей рассматриваемой группировки.

Однако оценка био разнообразия биоценоза в целом по численности видов будет неправильной, если мы не учтем размеры организмов. Ведь в биоценоз входят и бактерии, и макроорганизмы. Поэтому необходимо организмы объединять в группировки, близкие по размерам. Здесь можно подходить и с точки зрения систематики (птицы, насекомые, сложноцветные и т.п.), экологом орфологической (деревья, травы, мхи и т.п.), либо вообще по размерам (микрофауна, мезофауна и макрофауна почв или илов и т.п.). Кроме того, следует иметь в виду, что внутри биоценоза существуют еще и особые структурные объединения - консорции. Консорция - группа разнородных организмов, поселяющихся на теле или в теле особи какого-либо определенного вида - центрального члена консорции, способного создавать вокруг себя определенную микросреду. Другие члены консорции могут создавать более мелкие консорции и т.д., т.е. можно выделить консорции первого, второго, третьего и т.д. порядка. Отсюда ясно, что биоценоз - это система связанных между собой консорций.

Чаще всего центральными членами консорций являются растения. Возникают консорции на основе тесных разноплановых взаимоотношений между видами (рис. 4.1).

Рис.4.1. Схема консорции дерева (липа):

4 - гусеница шелкопряда, питающаяся листвой дерева; 5 - жук-листоед;
6 - пчела - опылитель цветков; 7 - гнездо дрозда, свитое на ветви липы;
8 - олени - потребители веточного корма; 9 - лесная мышь - потребитель семян липы
(по Дювиньо и Тангу, 1968, с изменениями Воронова, 1987)

Пространственная структура сообществ

Виды в биоценозе образуют и определенную пространственную структуру, особенно в его растительной части - фитоценозе. Прежде всего четко определяется вертикальное ярусное строение в лесах умеренного и тропического поясов. Например, в широколиственных лесах можно выделить пять - шесть ярусов: первый - деревья первой величины (дуб, липа, вяз); второй - деревья второй величины (рябина, яблоня, груша, черемуха и др.); третий - подлесок кустарниковый (крушина, жимолость, бересклет и др.); четвертый состоит из высоких трав, а пятый и шестой, соответственно, из более низких трав (рис. 4.2). Ярусность выражена в травянистых сообществах, но не столь явно, как в лесах. Ярусность позволяет растениям более полно использовать световой поток - в верхних ярусах светолюбивые, в нижних - теневыносливые и в самом низу - улавливают остаток света тенелюбивые растения.

Рис.4.2 Ярусы лесного биогеоценоза (по И. Н. Пономаревой, 1978)

В вертикальном направлении под воздействием растительности изменяется микросреда, включая не только выравненность и повышение температуры, но и изменение газового состава за счет изменения направления потоков углекислого газа ночью и днем, выделения сернистых газов хемосинтезирующими бактериями и т.п. Изменения микросреды способствуют образованию и определенной ярусности фауны - от насекомых, птиц и до млекопитающих (см. рис. 4.2).

Помимо ярусности в пространственной структуре биоценоза наблюдается мозаичность - изменение растительности и животного мира по горизонтали. Площадная мозаичность зависит от разнообразия видов, количественного их взаимоотношения, от изменчивости ландшафтных и почвенных условий. Мозаичность может возникнуть и искусственно - в результате вырубки лесов человеком. На вырубках формируется новое сообщество.

Видовая структура биоценозов, пространственное распределение видов в пределах биотопа, во многом определяется взаимоотношениями между видами, между популяциями.

Экологическая ниша и взаимоотношения организмов в сообществе

Экологическая ниша - место вида в природе, преимущественно в биоценозе, включающее как положение его в пространстве, так и функциональную его роль в сообществе, отношение к абиотическим условиям существования (Хрусталев, Матишов, 1996). Важно подчеркнуть, что эта ниша не просто физическое пространство, занимаемое организмом, но и его место в сообществе, определяемое его экологическими функциями. Ю. Одум (1975) образно представил экологическую нишу как занятие, «профессию» организма в той системе видов, к которой он принадлежит, а его местообитание - это «адрес» вида.

Знание экологической ниши позволяет ответить на вопросы, как, где и чем питается вид, чьей добычей он является, каким образом и где он отдыхает и размножается (Дажо, 1975).

Модель экологической ниши, предложенная Г. Е. Хатчинсоном, довольно проста: достаточно на ортогональных проекциях отложить значения интенсивности различных факторов, а из точек пределов толерантности восстановить перпендикуляры, то ограниченное ими пространство и будет соответствовать экологической нише данного вида (рис.4.3). Экологическая ниша - это область комбинаций таких значений факторов среды, в пределах которой данный вид может существовать неограниченно долго.

Рис.4.3. Модель экологической ниши по Г.Е. Хатчинсону.
По осям - отдельные факторы

Например, для существования наземного растения достаточно определенного сочетания температуры и влажности, и в этом случае можно говорить о двумерной нише. Для морского животного уже необходимо кроме температуры еще как минимум два фактора - соленость и концентрация кислорода - тогда уже следует говорить о трехмерной нише (см. рис. 4.3) и т.д. На самом деле этих факторов множество и ниша многомерна.

Экологическую нишу, определяемую только физиологическими особенностями организмов, называют фундаментальной, а ту, в пределах которой вид реально встречается в природе, - реализованной.

Реализованная ниша - это та часть фундаментальной ниши, которую данный вид, популяция, в состоянии «отстоять» в конкурентной борьбе. Конкуренция, по Ю. Одуму (1875, 1986) - отрицательные взаимодействия двух организмов, стремящихся к одному и тому же. Межвидовая конкуренция - это любое взаимодействие между популяциями, которое вредно сказывается на их росте и выживании. Конкуренция проявляется в виде борьбы видов за экологические ниши.

Классификация биотических взаимодействий популяций двух видов приведена в табл. 4.1.

Таблица 4.1

Классификация биотических взаимодействий популяций двух видов
(по Ю. Одуму, 1986)

В табл 4.1 «0» означает, что на популяцию не оказывается никакое влияние при взаимодействии видов; «+» - что она получает пользу от взаимодействия видов; «-» - что она испытывает отрицательное влияние от такого взаимодействия.

Не существует двух различных видов, занимающих одинаковые экологические ниши, но есть близкородственные виды, часто настолько сходные, что им требуется по существу одна и та же ниша. В этом случае, когда ниши частично перекрываются, возникает особо жесткая конкуренция, но в конечном итоге нишу занимает один вид. Явление экологического разобщения близкородственных (или сходных по иным признакам) видов получило название принципа конкурентного исключения, или принципа Гаузе, в честь русского ученого, доказавшего его существование экспериментально в 1934 г. (рис. 4.4).

Рис.4.4. Динамика популяций инфузорий Paramecium aurelia (1) и Paramecium candatum
(2), культивируемых при регулярном добавлении в среду одного и того же количества пищи:

а - изолированные популяции каждого вида; б - совместно культивируемые популяции
(по Г. Ф. Гаузе, 1934)

Г. Ф. Гаузе экспериментально исследовал конкуренцию двух видов инфузорий: Parameciumcandatum и Paramecium aurelia. Их культивировали раздельно и вместе, используя строго дозированную бактериальную пищу. При раздельном культивировании их численность росла по обычной S -образной кривой, при совместном - побеждали в конкурентной борьбе P. aurelia (см. рис. 4.4). Поражение P.candatum объясняется тем, что она плохо переносила накопление в среде продуктов метаболизма бактерий и размножалась медленнее. Но при смене пищи, например, при замене ее на дрожжи, побеждала уже P. candatum, так как в благоприятных для обоих видов условиях она имела преимущество за счет способности к более быстрому размножению и увеличению своей численности.

Межвидовая конкуренция за ресурсы может касаться пространства, пищи, биогенных веществ и т.п. Именно уменьшение ресурсов приводит к ситуациям, когда мы имеем дело лишь с отрицательными взаимодействиями. Результатом межвидовой конкуренции может быть либо взаимное приспособление двух видов, либо популяция одного вида замещается популяцией другого вида, а первый вынужден переселиться на другое место или перейти на другую пищу. Если виды живут в разных местах, то говорят, что они занимают разные экологические ниши, если же они живут в одном месте, но потребляют разную пищу, то говорят об их несколько различающихся экологических нишах. Процесс разделения популяциями видов пространства и ресурсов называется дифференциацией экологических ниш (рис. 4.5). Нарис. 4.2 также видна дифференциация ниш по ярусам леса.

Рис.4.5. Распределение копытных зверей по ярусам питания в африканской саванне
(по де ла Фуэнте, 1972):

1 - жираф; 2 - антилопа геренук; 3 - антилопа дик-дик; 4 - носорог; 5 - слон; 6 - зебра;
7 - гну; 8 - газель Гранта; 9 - антилопа бубал

Главный результат дифференциации ниш - снижение конкуренции. Например, тенелюбивые растения не конкурируют со светолюбивыми, снижается острота конкуренции за ресурсы, численность доминирующего вида, например, регулируется хищником, и т.п. Иными словами, есть множество обстоятельств, при которых разные виды-антагонисты могут сосуществовать. И, тем не менее, это отрицательные взаимодействия, поскольку взаимовлияние видов остается и не позволяет полностью раскрыть свои возможности каждому из них.

Нейтрализм - это такая форма биотических взаимоотношений, когда сожительство двух видов на одной территории не влечет за собой ни положительных, ни отрицательных последствий для них. В этом случае виды не связаны непосредственно друг с другом и даже не контактируют между собой. Например, белки и лоси, обезьяны и слоны и т.п. Отношения нейтрализма характерны для богатых видами сообществ.

Аменсализм - это такие биотические отношения, при которых происходит торможение роста одного вида (аменсала) продуктами выделения другого. Эти отношения обычно относят к прямой конкуренции и называют антибиозом. Наиболее хорошо они изучены у растений, которые применяют различные ядовитые вещества в борьбе с конкурентами за ресурсы, и данное явление называют аллелопатия.

Аменсализм весьма распространен в водной среде. Например, сине-зеленые водоросли, вызывая цветение воды, тем самым отравляют водную фауну, а иногда даже скот, который приходит на водопой. Такие «способности» проявляют и другие водоросли. Они выделяют пептиды, хинон, антибиотики и другие вещества, которые ядовиты даже в малых дозах. Называют эти яды эктокринными веществами.

Хищничество и паразитизм: отношения хищник - жертва и паразит - хозяин являются результатом прямых пищевых связей, которые для одного из партнеров имеют отрицательные последствия, а для другого - положительные. Все варианты пищевых экологических связей можно отнести к этим типам взаимодействия, в том числе и корову, поедающую траву. Любой гетеротрофный организм в сообществе существует за счет поедания другого гетеротрофа или автотрофа.

Хищниками называют животных, питающихся другими животными, которых они ловят и умервщляют. Для хищников характерно охотничье поведение. Изобилие насекомых, их малые размеры и легкодо ступность превращают деятельность плотоядных хищников, обычно птиц, в простое «собирательство» добычи, подобно тому, как собирают семена, зерна птицы, питающиеся ими. Насекомоядные хищники по способу овладения пищей приближаются к пастьбе травоядных животных. Некоторые птицы могут питаться и насекомыми, и семенами.

Паразитизм - это такая форма пищевой связи между видами, когда организм-потребитель (консумент) использует тело живого хозяина не только как источник пищи, но и как место своего обитания (постоянного или временного). Паразиты намного мельче своего хозяина. Паразитические отношения имеют насекомые-вредители и растения, кровососущие насекомые и животные и т.п. Насекомые-паразиты часто бывают разносчиками эпидемий: вши - тифа, клещи - энцефалита и др.

В природе существуют системы, состоящие из одного вида и нескольких других видов, являющихся по отношению к нему паразитами. Это так называемые паразитарные комплексы, например, для успешной борьбы с вредителями культурных растений, необходимо изучать: состав и плотность комплекса, закономерности его роста и т.п.

Хищничество и паразитизм - это пример взаимодействия двух популяций, отрицательно сказывающегося на росте и выживании одной из них (см. табл. 4.1, п. 5,6). Подобные популяции развиваются, т.е. эволюционируют, синхронно, и по мере длительности их взаимодействия, коэволюция может привести к снижению степени отрицательного взаимодействия или устранить его вообще, поскольку сильное подавление популяции жертвы или хозяина популяцией хищника или паразита может привести к уничтожению одной из них или обеих.

Рис. 4.6. Эволюция гомеостаза всистеме «хозяин - паразит»
(хозяин - комнатная муха Muska domestika (I),паразит - оса Nasonia vitropennis (II)
(по Ю. Одуму, 1975):

а - недавнообъединенные популяции (впервые посажены вместе дикие особи);
б - популяции взяты изколоний, в которых оба вида сосуществовали
на протяжении двух лет

На рис.4.6 приводится пример эволюции гомеостаза двух насекомых в системе «хозяин - паразит», которые помещались в клетку, состоящую из 30 пластиковых камер, соединенных друг с другом трубочками, замедлявшими расселение паразита. На рис.4.6, а видны резкие подъемы и спады плотности популяций, так как в этом случае дикие особи недавно посажены вместе. На рис. 4.6, б - популяции взяты из колоний, в которых они просуществовали совместно в течение двух лет и здесь уже отмечается более стабильное равновесие, резкие спады отсутствуют, так как у хозяина появляется адаптивная устойчивость, о чем свидетельствует сильное снижение рождаемости у паразита.

Итак, наиболее жесткая конкуренция проявляется тогда, когда контакт между популяциями установлен недавно, например, вследствие изменений, произошедших в экосистеме под влиянием деятельности человека. Именно поэтому, непродуманное вмешательство человека в структуру биоценоза нередко приводит к эпидемическим вспышкам.

Таким образом, при длительном контакте паразитов и хищников с их жертвами, влияние на них весьма умеренно, нейтрально или даже благоприятно, а наиболее повреждающее действие оказывают новые паразиты и хищники. Отсюда вывод: «необходимо избегать создания новых отрицательных взаимодействий, а если они возникли, стараться по возможности сдерживать их» (Ю. Одум, 1975).

К положительным видам взаимодействия Ю. Одум относит комменсализм, кооперацию и мутуализм (см. табл. 4.1). Многие экологи считают, что в стабильных экосистемах отрицательные и положительные взаимодействия должны находиться в равновесии.

Комменсализм, кооперация и мутуализм можно рассматривать как стадии последовательногосо вершенствования положительных взаимодействий в ходе эволюции.

Комменсализм - это наиболее простой тип положительных взаимодействий (см. табл. 4.1).Комменсалы - организмы, которые поселяются в жилищах других организмов, не причиняя им зла и не принося вреда. Для тех животных, у которых они «квартируют», комменсалы безразличны. В океанах и морях в каждой раковине - организмы, которые получают там укрытие, но они абсолютно безобидны для «владельца» этой раковины.

Протокооперация - это следующий шаг к более тесной интеграции, когда оба организма получают преимущества от объединения, хотя их сосуществование не обязательно для их выживания. Например, крабы и кишечнополостные: краб «сажает» себе на спину кишечнополостное, которое маскирует и защищает его (имеет стрекательные клетки), но в свою очередь, оно получает от краба кусочки пищи и использует его как транспортное средство.

Мутуализм (симбиоз) - следующий этап развития зависимости двух популяций друг от друга. Объединение происходит между весьма разными организмами и наиболее важные мутуалистические системы возникают между автотрофами и гетеротрофами. Примером может служить сотрудничество между бактериями, фиксирующими азот, и бобовыми растениями, симбиоз между копытными и бактериями, обитающими в их рубце, и др. Широко известным примером мутуализма, является симбиоз водоросли и гриба - лишайники. Функциональная и морфологическая связь этих организмов настолько тесна, что лишайники практически составляют единый организм. Ю. Одум (1975), образно говоря, призывает к тому, чтобы «модель лишайника», прошедшая путь к гармоническому взаимодействию двух различных видов, через паразитизм водоросли, стала символичной для человека, который должен установить мутуалистические отношения с природой, поскольку он является гетеротрофом, зависящим от имеющихся ресурсов. В противном случае, «он, подобно «неразумному» и «неприспособленному» паразиту, может довести эксплуатацию своего «хозяина» до такой степени, что погубит себя».

К сказанному о межвидовой борьбе в биоценозе, следует добавить, что в 90-х годах ХХ в. английские и канадские ученые пришли к выводу, что в лесах деревья и кустарники, наоборот, помогают друг другу благодаря действию законов всеобщей поддержки. Информация, которая обеспечивает такое взаимодействие, передается под землей благодаря грибку микориза, имеющихся на корнях всех растений.

Из приведенной характеристики биоценозов ясно, что их устойчивость (гомеостаз) зависит, прежде всего, от изменений в структуре сообществ, от уменьшения видового разнообразия, от изменений в трофической цепи и, в известной мере, от дезорганизации регуляции биоценоза с помощью аллелохимических факторов и др.